1. In this question I will guide you through the proof of the following proposition:

Proposition 0.1. If $y \ge 0$ and $n \in \mathbb{N}^+$ then there is a unique non-negative real number s such that $s^n = y$. In particular, the function $f: [0, \infty) \to [0, \infty)$ defined by $f(x) = x^n$ is one to one and onto.

a) Prove the following two lemmas that are used throughout the rest of the proof.

Lemma 0.2. If x < y then xz < yz for all $x, y, z \in \mathbb{R}^+$

Lemma 0.3. If 0 < x < 1 then $x^n < x$ for all $n \in \mathbb{N}^+$ and if x > 1 then $x^n > x$ for all $n \in \mathbb{N}^+$.

- b) Let $S = \{x \in \mathbb{R} : x > 0 \text{ and } x^n < y\}$, $\alpha = \min\{1, y\}$ and $\beta = \max\{1, y\}$. Show that if $x < \alpha$ then $x \in S$ and that β is an upper-bound for S. From this information show that S has a least upper bound, call it s. We will show that this is the root for y.
- c) Show that if t > 0 and $y < t^n$, then t is an upper bound for S.
- d) Show that if t > 0 and $y < t^n$, then there is a $v \in (0,t)$ such that $y < v^n$. Hence, v < t and v is an upper bound for S. In particular, t is not the least upper bound for S and therefore $s^n \leq y$.

Hint: Suppose for the sake of contradiction that $v^n < y$ for all $v \in (0, t)$. Thus, $v^n < y < t^n$ and hence $0 < |t^n - y| < |t^n - v^n|$ (why?). Then conclude that this is a contradiction based on the fact that for a fixed t and $v \in (0, t)$

$$|t^n - v^n| \le |t - v| \cdot M$$
 for some $M \in \mathbb{R}^+$

(state why this is contradiction).

e) Show that if t > 0 and $t^n < y$ then there exists a v such that 0 < t < v and $v^n < y$. Use this to conclude that t is not an upper bound for S and thus $s^n \ge y$. In combination with the above parts conclude that $s^n = y$